Q2. (a) Draw the Op-amp symbol and explain various Op-amp terminals. List the ideal characteristics of on op-amp.
(b) What is the difference between compensated and non compensated op-amps? Explain.

Q3. (a) Derive an expression for output voltage in case of differential amplifier using two OP-Amps.
(b) What is internally compensated op-amp? Draw the frequency response of op-amp and derive an expression for open loop voltage gain.

Q4. (a) What is slew rate and its causes? Derive an expression for slew rate.
(b) For an op-amp having a slew rate of $3 \mathrm{~V} / \mu \mathrm{sec}$. What is the maximum closed loop voltage gain that can be used when the input signal varies by 0.4 V in $12 \mu \mathrm{sec}$? (5)
(c) For a dual input balanced output, differential amplifier, $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-10 \mathrm{~V}$, $R_{C}=4.7 \mathrm{k} \Omega, R_{E}=6.8 \mathrm{k} \Omega$ and $R_{S}=50 \Omega$. Determine
(i) I_{CQ} and $\mathrm{V}_{\mathrm{CEQ}}$
(ii) The voltage gain
(iii) Input and output resistance.

Assume $\mathrm{h}_{\mathrm{fe}}=500, \mathrm{~h}_{\mathrm{ie}}=18 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{BE}}=0.712 \mathrm{~V}$.

Q5. (a) For an op-amp used as an inverting amplifier, the values of R_{f} and R_{l} are $47 \mathrm{k} \Omega$ and 470Ω respectively. The input offset voltage drift is $28 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ while input offset current drift is $300 \mathrm{pA} /{ }^{\circ} \mathrm{C}$. The amplifier is nulled at $25^{\circ} \mathrm{C}$. If the input voltage is 12 mV peak sine wave at 2 kHz , then calculate the error voltage and output at $55^{\circ} \mathrm{C}$. Also draw the output voltage waveform at $55^{\circ} \mathrm{C}$.
(b) List the four negative feedback configurations. Which two configurations are most commonly used and why?

Q6. (a) Non-compensated op-amp has a DC gain $A=1,20,000$ and the following break frequencies: $f_{01}=5 \mathrm{kHz}, f_{02}=320 \mathrm{kHz}, f_{03}=1 \mathrm{MHz}$, and $f_{04}=2 \mathrm{MHz}$. Write the open loop gain equation for the op-amp as a function of break frequencies and DC gain A. Also draw the frequency response and phase response curves.
(b) What is the active load? Where it is used and why.
(c) Discuss the various methods of realizing high input resistance for an op-amp. Highlight the relative merits and demerits of each.
(d) Define the common-mode rejection ratio (CMRR) and explain the significance of a relatively large value of CMRR.

